阿里通义千问发布 Qwen2.5-Turbo AI 模型:支持 100 万 tokens 上下文,处理时间缩短至 68 秒

11 月 19 日消息,阿里Thousand Questions on Tongyi昨日(11 月 18 日)发布博文,宣布在经过数月的优化和打磨后,针对社区中对更长上下文长度(Context Length)的要求,推出了 Qwen2.5-Turbo Open Source AI Models.

阿里通义千问发布 Qwen2.5-Turbo AI 模型:支持 100 万 tokens 上下文,处理时间缩短至 68 秒

Qwen2.5-Turbo 将上下文长度从 12.8 万个扩展至 100 万个 tokens,这一改进相当于约 100 万英语单词或 150 万汉字,可以容纳 10 部完整小说、150 小时的演讲稿或 30000 行代码。

注:上下文长度(Context Length)是指在自然语言处理(NLP)中的大型语言模型(LLM)在一次处理过程中能够考虑和生成的文本的最大长度。

该模型在 1M-token 的 Passkey 检索任务中实现了 100% 准确率,RULER 长文本评估得分为 93.1,超越了 GPT-4 和 GLM4-9B-1M。

阿里通义千问发布 Qwen2.5-Turbo AI 模型:支持 100 万 tokens 上下文,处理时间缩短至 68 秒

团队通过整合稀疏注意力机制(sparse attention mechanisms),将处理 100 万 tokens 到输出第一个 tokens 的时间,从 4.9 分钟缩短至 68 秒,速度提升达 4.3 倍,这一进步显著提高了模型的响应效率,使其在处理长文本时更加迅速。

Qwen2.5-Turbo 的处理成本保持在每百万个 tokens 0.3 元,能够处理 3.6 倍于 GPT-4o-mini 的 token 数量。这让 Qwen2.5-Turbo 在经济性上具备了更强的竞争力,成为高效、经济的长上下文处理解决方案。

尽管 Qwen2.5-Turbo 在多个基准测试中表现优异,团队仍然意识到在真实场景中的长序列任务表现可能不够稳定,且大型模型的推理成本需要进一步优化。

团队承诺将继续优化人类偏好、提高推理效率,并探索更强大的长上下文模型。

Attach reference address

statement:The content is collected from various media platforms such as public websites. If the included content infringes on your rights, please contact us by email and we will deal with it as soon as possible.
Information

消息称腾讯杰出科学家、混元大模型技术负责人之一刘威离职

2024-11-19 21:31:13

Information

谷歌回应 Gemini 聊天机器人回复“人类去死吧”:已采取措施防止类似事件再次发生

2024-11-19 21:36:12

Search