生成式AI大规模采用,传统AI怎么样了?

在ChatGPT推出近一年后,企业们争相采用生成式AI,以获取新的竞争优势或防止竞争对手采用相同的技术。然而,这引发了一个问题:传统形式的AI,特别是基于机器学习算法的预测模型,是否仍然有存在的空间?

生成式AI大规模采用,传统AI怎么样了?

图源备注:图片由AI生成,图片授权服务商Midjourney

迈进2023年,McKinsey的最新AI报告表明,生成式AI迎来了其“爆发年”,其中三分之一的受访组织表示他们已经定期使用生成式AI。调查还显示,由于生成式AI的进步,40%的组织计划增加对AI的整体投资。然而,有趣的是,这并没有引起对其他形式的AI的广泛提升,尤其是基于机器学习算法的传统模型。

Fortune-Deloitte CEO调查的数据显示,55%的首席执行官正在评估或尝试生成式AI,但只有39%的首席执行官表示他们正在评估或尝试预测性AI。这些数字引起了Forrester分析师Kjell Carlsson的兴趣,他指出生成式AI与传统AI之间存在实质性差异。

生成式AI的生成性质是真正的区别所在。许多公司正在利用生成式AI开发基于其内部数据、文本和报告的内部助手和聊天机器人。此外,令人惊讶的是,制药公司也在加速药物发现方面使用生成式AI。

然而,与生成式AI的崛起相比,将AI应用程序投入生产的过程并没有发生太大变化。所有那些在规模、整合最新技术、实现可观察性和透明性、以及利用混合云进行轻松和成本效益方面所需的传统能力在生成式AI领域变得更加重要。

虽然数据科学平台供应商如Domino正在忙于调整其业务模式以针对生成式AI,但还有其他一些供应商正更深度地利用生成式AI的潮流。OpenAI及其业务合作伙伴Microsoft正在利用先发优势,在新兴的生成式AI市场上占据重要份额。

生成式AI供应商的市场成功反映了生成式AI与传统AI之间的另一个重要区别:生成式AI目前主要是一种购买而不是构建的东西。这也是LinkedIn上数据和分析顾问John Thomas最近一篇文章的主题。他指出,传统AI模型大多是定制开发的,而生成式AI应用程序主要是使用供应商开发的基础模型构建的。

生成式AI和传统AI项目之间还存在其他重要区别,包括开始使用生成式AI需要较小的前期开发成本,并且可以在几天内启动。相比之下,传统AI需要更高的前期成本,并且需要更长的启动时间。

技术、技能、成本和数据类型等方面的巨大差异使得使用案例也有所不同。传统AI主要用于分析性质的工作,涉及根据过去的数据预测值或分类观察结果。相反,生成式AI可以生成内容并执行任务,其新的能力包括生成和操纵代码、文本、图像、视频、音频和数据。

随着组织从生成式AI的实验/评估阶段迅速过渡到有限和全面生产阶段,它们将在如何使用这项技术方面积累宝贵的知识。然而,正如过去在大数据、机器学习和传统AI方面的经验所示,通往生产力的道路上可能会有意外的波折,甚至不考虑生成式AI在幻觉、隐私和法律责任方面的已知问题。

尽管主流媒体中的炒作水平表明我们已经实现了人工通用智能(AGI)的终极目标,但那些深耕于大数据、高级分析和人工智能领域的人士认识到,我们距离实现AGI仍然有很远的路要走。此外,考虑到大多数组织在生成式AI方面的经验不到一年,围绕生成式AI的集体学习曲线必然是陡峭的。

在此期间,生成式AI将继续吸引几乎所有的注意力,而传统AI将为此付出代价。一旦围绕生成式AI的糖分高潮消退,高管们意识到它并不提供一个快速而轻松的转型成功之路,同时还带来了关于准确性、透明性和法律责任的一系列新问题,企业将在将生成式AI整合到现有IT堆栈和业务模型中进行艰难但必要的工作时找到更坚实的基础。

声明:内容均采集自公开的网站等各类媒体平台,若收录的内容侵犯了您的权益,请联系邮箱,本站将第一时间处理。
资讯

受马斯克 Grok AI 启发的代币市值飙升至 1.6 亿美元,突显加密货币市场的投机热潮

2023-11-14 13:50:18

资讯

李彦宏:百度目前20%代码由AI完成 文心一言已有800万开发者

2023-11-15 10:35:43

搜索